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A large number of papers had been published up to the present which dealt with the ana- 

lysis of shock wave formation in one-dimentional nonstationary flows with discontinui- 
ties resulting from the motion of a piston starting with zero velocity, and in a two-dimen- 

sional stationary (supersonic) flow with the shock wave generated by a concave wall with 
zero angle leading edge. The case of nonstationary plane waves considered in the early 
papers by Earnshaw [l], Hugoniot p] and Rayleigh [3], and later by Pillow [4] , found its 

way into numerous textbooks on gas dynamics (see, e.g., [5 and 61). Jeffrey [7 and 81 
had investigated a flow with cylindrical and spherical waves under homogeneous initial 
conditions of gas, and also of flows with a power law of density distribution inside cyfin- 
drical, or spherical cavities. Mayer [9] had analyzed the supersonic’flow at the intake 

of a plane axisymmetric channel with a zero angle leading edge. Similar results were 

obtained by Johannesen [JO] in the case of a plane flow. It was established that when 
either the piston acceleration, or the boundary curvature are finite and different from 
zero, the primary characteristic which bounds the perturbed flow area is intersected at 
a finite distance by the characteristics of the like set. 

The position of the first intersection point on the primary characteristic is determined 

by the gas parameters, and either by the piston initial acceleration, or the curvature of 
the leading edge contour. All of the above-mentioned authors had limited their investi- 

gations to the equilibrium case, and usually considered a perfect gas of constant specific 
heat. 

Papers by B%ger [ll] and Rarity [l2] were devoted to the determination of the first 

interSeCtiOn point along the primary characteristic of equilibrium flows. B’tirger had 
considered a one-dimensional nonstationary flow in the presence of plane waves, The 
gas thermodynamic properties, and the number of nonequilibrium processes were arbi- 

trary. Although Rarity had confined himself to the case of a special “a -gas” with one 

noneq~~ibrium process, he had nevertheless considered, in addition to the problem solved 

by Burger, a stationary plane supersonic flow. These investigations had shown that the 
presence of nonequilibrium processes results in the disappearance of the point of inter- 
section of characteristics with the primary characteristic. With small, but finite relax- 

ation times this point recedes into infinity, and with a still higher rate of these processes 
vanishes altogether. 

This paper which presents in a generalized form the results of [ll] and E3.23 deals with 
one-dimensional nonstationary flows with plane, cylindrical and spherical waves, and 
also with plain and axisymmetric stationary’ supersonic flows, The thermodynamic pro- 
perties of the medium, and the number of nonequilibrium processes are assumed to be 
arbitrary, as was the case in pl], External and internal problems are considered (we 

shall call a problem “internal” when dealing with a stationary flow in a channel, or with 
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a nonstationary flow of gas in a bounded cavity). 

The intersection points may generally occur not only along the primary characreristic, 

but also within the area of influence which leads to the formation of “internal” shock 

waves. The case in which “internal” shock waves are either absent, or so situated that 
they do not destroy the flow in the neighborhood of the first intersection point along the 
primary characteristic, which point is the origin of an “external” shock wave, belongs to 

a particular class of the laws of piston motion (or of the boundary form). The main dis- 

tinctive feature of this case is that the location of the shock wave initial point may be 

dete&mined from local considerations, without having to resort to a complete solution 

which even for equilibrium flows is, incidentally, known in the case of a plane flow only, 

Although the investigation of the position of the point of a shock wave origin in a non- 

equilibrium flow (as well as in the case of an equilibrium flow other than plane one) is 

possible in this particular case only, the obtained results are undoubtedly of interest, as 

they permit to establish, in particular, the trend of the influence of noneq~librium on 
the formation of shock waves. 

Problems here considered are examples of problems in which the failure of a continu- 

ous solution of a hyperbolic system of quasi-linear equations in two independent varia- 

bles takes place. The failure of such solutions had recently been the subject of intensive 
investigations (see, e. g. , [13J and the review by Lax [14] ). In connection with the prob- 
lem here considered, we should note between results of a general character the approach 

developed by Jeffrey [7 and 81, and by Jeffrey and Taniuty [15]. 

1. Let 6 denote time, r the distance of the axis, or the center of symmetry from a 

plane, and U the gas velocity (the velocity vector is directed along the r-axis). We 

shall consider a flow generated by a plane, cylindrical or spherical piston starting from 
rest with zero initial velocity subject to the law r =R(t) . If point 0 is the initial 

position of the piston, then with subscripts 0 denoting parameters at that point we obtain 
r, =8 ( $, ) and ao’ 3 (& Id z? )o = 0 . We assume that at the beginning of motion the 

gas which fills space r > ro , or cavity r” <r. is at rest in a state of complete thermo- 
dynamic equilibrium, and that the distribution of its density p is ~iform, i.e. is inde- 

dendent of r . 
Let the thermodynamic state of the medium (its specific enthalpy h in particular) be 

determined by pressure p , density, and by n nonequilibrium parameters 471 , . . . , , g , 
which may represent the mass portions of the medium constituents, energies of internal 

degrees of freedom, etc. We shall denote a set of such parameters by Q , and write ex- 

pressions of the type of f(ql , . . . , Q a) in the form f(4 ) . 
A one-dimensional nonstationary nonequilibrium flow of an inviscid and non-heat- 

conducting gas is defined by Eqs. 

Here v = 0 I 1 or 2 for plane, cylindrical and spherical cases, respectively, and Tk is 

a constant which has the meaning of relaxation time of parameters Q k . Functions 

h = h ($7 Pt q), Ok = Ok (p, p, q) fk = 1. -I’. Ii) (4 4 



The onset of shock waves in nonequilibrfum f’iorn 805 

are assumed to be known. If Tk = m , then 4 L is “frozen”, i. e. remains at a constant 

value. If Tk = 0 , then 4 k is in equilibrium. 
The equilibrium value of CJ k is a function of p, p and ~j+k in accordance with the 

final relationship WJc (PI BY q) = 0 (i-3) 

It is convenient to assume all paramewrs to be dimensionless. Let X,, U * and p, be 
constants having respectively the dimensions of length, velocity and density. As constants 

we shall select, for example, the initial coordinate of the piston (with V# 0 and To # 0), 
the velocity of sound, and the unperturbed gas density. If v = 0 , or To = 0, then product 

u *T, where 7, is the dimensionless relaxation time of one of the nonequilibrium proces- 

ses, may be taken as the dimension of .&, . The reduction to a dimensionless form is 

accomplished by relating spgtial variables to R, , time to R,/U *, velocities to U c , den- 

sity to p,, pressure to p+U * , and enthalpy to U y . In the reduction of parameters 4 1; 

to a dimensionless form account is to be taken of their dimensions, and constants Tk 
become dimensionless. 

The system of Eqs. (1.1) is hyperbolic, and has in addition to particle trajectories 

drldt =v t wo sets of real characteristics along which 

dr 
==vfa 

i 
a2 = Ph, 

I- ph, ’ 52 = (;$)P ,) (1.4) 

Here the upper (lower) sign corresponds to the characteristics of the first (second) set, 
while a is the “frozen” velocity of sound. 

2, The .grid of the first and second sets of characteristics cover the entire plane of 

variables r-6 . We shall define the characteristic variables s1 and c2 by Eq. 

$L(v*a)+l (i = 1, 2) (2.1) 

where the upper sign corresponds to -6 = 1 , and the lower to f, = 2 . It follows from (2.1) 

and (1.4) that the value of gi remains constant along every characteristic of the $th set. 
We pass from variables ?“t over the semicharacteristic variables 7 5’ . In terms of these 

new variables system (1.1) and the supplementary relationship defining 6 are written in 
the form 

0 

pa2vE ‘f apt + pau (a 5 v) U& - (v f a) up, tE + (a f u)” p& = 0 (2.2) 

a?% - ah + &I (a f 4 fbk - v (a f 4 prk + a2 (a rt 4 4 f$ hPk _ 0 

1.=1T - 
aZkqkE + %v (a& u, %tE = ca & v) fE”k (k=1, . . .) n) 

The upper signs in (2.2) yield a system which defines the flow in terms of variables 

r sl. and the lower ones in terms of variables r 5’. 

Let the piston trajectory berepresented in the rt -plane by the solid shaded curve 
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emanating from point 0 , as shown on Fig. 1, where the right-hand (left-hand) branch 
defines the piston motion for the case of an external (internal) problem, Characteristics 
cl= const, and ca= const of the external and internal problems respectively are shown 

t 
by solid lines, and in each case the characteristic of the 

corresponding set emanating from point 0 (we shall call 
this characteristic “primary” , and assume that along it 

.* 
5’ = 0) separates the perturbed flow area (above it) from 

;=u Q the area at rest, The primary characteristic, as well as the 

characteristics in the area at rest, is a staight line along 
which the derivatives of v;, pt. PE, at and tb become 

0 discontinuous. At the same time, as is seen from (2.2). Q~,E, 
Fig. 1 and all derivatives with respect to r remain continuous . 

We shall denote by subscript c;o the derivatives which 
remain continuous, and parameters of the gas when 5’ = 0 , From assumptions made about 

the gas at rest, Eqs. (1.3) which at complete thermodynamic equilibrium are valid for 
all k , and about the equations for qr in (2. L!) , we find 

vm =tih_m = v, 00 = pm = pm = arcs3 = QI, Kc = qiecc = 0 (2.33 

Intersection of characteristtcs of the 5th set occur at those points of the &plane at 
which the Jacobian of transformation of the independent variables, i. e. 

(2.4) 

We shall call such points singular, and denote parameters at these by subscript s . 
Let us assume that OR each of the characteristics of the Bh set lying above the primary 
characteristic we have c1 equal to (t - to) at points of intersection of these with the 

piston traf‘ectory, and at points of intersection with the straight line r = r, for those lying 
below the primary characteristic. With this assumption the area of perturbed flow will 

be defined by inequality 3’ :, 0, and the area at rest by 5’ c 0, and here tE; zz 1, Although 

characteristic 5’ = 0 is the discontinuity line of te, nevertheless, by virtue of the law 

of piston motion (8o’= 0) here considered, and because of the selected value of 5’ , we 
have at point 0, as well as above this characteristic 

f$$ I= ‘1 (3.5) 

Here, and throughout the following text the values of all parameters at si = 0 are 
understood to be taken at gl= + 0, i.e. as upper limit values. 

A? the piston surface the velocity of gas is R’( fi ). Therefore, in accordance with the 

selection of f ’ VEO = .K<,” (2.6) 

System(O.;?) together with the derived initial conditions and equalities (B. 3) completely 
define the values of derivatives t E, p <, V< etc. on the upper side of the primary charac- 
teristic. This is so because, first of all. from the second and third of Eqs. (2.2) written 
for 5 ’ = + 0 and equality a = a(p , p ,(J ) with (‘2.3 ) taken into account, we have 

PC=+- 

-t 4,3324pa3 

(2.7) 
co 2 PE, 

se = f &Pb Qe= apCo urn2 p< 

Here and in the following the upper sign relates to the external problem, and the lower 
to the internal one. 

Similarly, differentiating in the first of Eqs.(& 2) with respect to 5:‘. and the second 
with respect to r, utilizing (2.3) and (8, ‘7), and eliminating uEr from obtained equations, 
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we find that for ci = t 0 PE is defined by the differential Eq. 

PEr = - &h,)P, n hk (%a f aaw,,,) h=X 
L=l 2=P% 
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The integration of (2.8) with initial condition (8.6) rewritten for PE with the aid of 

(2.7) yields 
for P_- + 0 (2.9) 

In the plane case ( v = 0) the internal and external problems coincide with an accuracy 

which depends on the selection of the direction of the Paxis, while it may be alway? 

assumed that 7, = 0 . Taking the piston initial coordinate as the characteristic dimension, 

we obtain 7, = 1 for cylindrically and spherically symmetric flows (u = 1 and ~2) and 
7, ;r 0. It is interesting to note that in the case of piston expansion from either the axis, 
or the center of symmetry ( TQ = 0) ) and with a finite Rl and v# 0, we have alI along the 

primary characteristic pE s 0. 
The equation defining . & for 5’ = + 0 is obtained by the differentiation of the last of 

Eqs.(Z, 2) with respect to 2’ followed by a transformation with (‘2.3) and (2.7) taken 

into account, and is of the form 

Gr = F $- Pe 
( 

U= 
a + pa, + pagaP 

WC0 r&a ! 
Substituting into this ,VE from (2.9) and integrating with respect to r with initial con- 

dition (2.5). we find that 

UJ (Y, r, ra, hm) = s( 1 $ ” exp [& h, (2 - ro)] dz 

r. 

If all nonequilibrium processes are frozen (To = a3, with k= 1,. . . , n) , then A_ = 0. and 

@((Y, r, ro, 0) = 
( 

r - To for Y = 0 

2 [(rr# - ro] for Y = i (2.11) 
r0 ln (r / r0) for v = 2 

The same formulas hold for a complete equilibrium flow (??, = 0), however, the equilib- 
rium values of C& and a, which we shall denote by a ,, co and a, cg differ from rx, and 

a as by virtue of (1.3) at1 Q k ‘s under equilibrium conditions must be considered as 
fG&ons of p and p . It is known that a, > a, o3 , therefore, the primary characteristic 

mder equilibrium condition (straight dotted line on Fig. 1) lies above the similar charac- 
teristic of a nonequilibrium flow. 

In conditions of incomplete equilibrium, when only the last n-7 parameters ( ‘&+I = 

= .I.. = 7, = 0) change in an equilibrium manner, the primary characteristic occupies an 
intermediate position. 

Cases of complete and incomplete equilibrium may be considered to be the limits of 
the nonequillbrium case when Tj + 0 for J = F + 1,. . . , n , where r 2 0 . It should be 
borne in mind that because of the stipulation of stability of the equilibrium state 1161 

- 04&&O 

where A,= 0 in the “frozen” case considered above, and h,= - 00 in the case of a com- 

plete, or partial equilibrium. Because. 0 (v, P, r0, - W) = 0, hence, from (2.9) and 
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(2, IO) we obtain pE zz 0, te = 1 when 5’ = + 0, which means that in accordance with 

wasstated previously the flow is ~~rt~bed not only below, but also in a certain neigh- 
borhood above the primary characteristic, when &, = - m . 

When r = r. , 
when A,# -0ci. 

@ = 0 by definition, and for finite rates of nonequIl~brium processes, i. e. 

with rs Po the following Inequalities hold: 

Thus, in an external. problem @ is positive and increases with increasing r , while in 

an internal one 4 is negative and its absolute value increases with decreasing r. The 

decreases of kcp from 0 to - m in both cases results in a decrease of I*/ . If r. = 0 , 
and v=I ,or 2 ,then @SO. 

The integral in the expression of @ may he obtained not only for the limit value of 
xcLI , but abo for any arbitrary of its values. To sum up, we have 

@,v, )I, 1”0, &o) = 

t 

(11 (z) = G \ exp (-1%) dt, Ei (x)=1 
0 --oo 

A comparison of (2. I.I) and (2.12) shows that contrary to the ease of a “frozen” ffow 

in which @ increases i~f~it~ly with increasihg r , the limit value of 4 for xc0 < 0 and 
r+-u is finite. In the case of an external problem this property is of great importance 
for the eIucidation of the question of existence of a singular point befonging to the pri- 

mary characteristic . 
The condition defining Coordinate ?$ for f” = 0 is written in accordance with (2.4) 

and (2.10) in the form 

1. - &“a,@ (Y, r,, r,, a@J = 0 (2.13) 

As U, is always positive (for a perfect gas with adiabatic exponent H, it is equal 
(1c + 1) / Za,” ) , the intersection of characteristics occurs, as in the case of equilibrium 

flows, only when the piston moves towards the gas, i e. when. as” 2 0. 
Denoting by ho the value of r, corresponding to the “frozen” case (It== 0). we obrain 

from (2.11) and (2.13) 

i 

r, + [R!j?XJl for v= 0 

pSo --_ r0-’ t r0 + l/2 (Ro”u,)-‘I? for v=l (Z.14) 

r~ exp (r&~“u,)-~ for v=2 

For a perfect gas Eq. (2.14) coincides with resuits published in I4 to 8ft 

Increasing jhco 1 f rom zero to infinity leads by virtue of the properties of function 4 

to a recession of point s , i.e. to an increase of f 7, - r, f . In the case of the external 
problem there exists a finite value of koD determined by condition (2.13 with 7, = co for 
which point s recedes into infinity. There are no singular points on the primary charac- 
teristic for large values of 1 ha 1 . A similar situation occurs in the case of an inner 
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problem with cylindrical waves, for which the limiting value of xc0 is found from (2.13) 

with r, = 0. On the other hand, @ (2, 0, r,, A,) = - - DO , and consequently, in the 
case of an inner problem with spherical symmetry, Eq. (2.13) defines a certain finite 
7, > 0, for any arbitrary xc0 > - 0~ . 

a) b) The absence of a singular point on the nonequilib- 

t t ,’ 

~ ~ 

rium primary characteristic does not preclude the 

existence of a shock wave originating within the 

..‘$ ,’ J;? 
/’ influence area, even when in the case of a “frozen” 

,’ 
J’.’ 

s 
flow (ha= 0) there are no “internal” shock waves. 

,’ 
I’ ,’ Thus, for example, when hm= - 00, i.e. in the limit 

I’ !’ 
,’ r ,’ P 

equilibrium case, there exists an “internal” singular 

ff 0 point (s ’ on Fig. 1) lying on the primary equilibrium 

Fig. 2aa, b 
characteristic. In accordance with what was said 

before it follows that the coordinate rSP is also found 
from (2.14). but with c&, substituted for aoJ , Usually CL, rr&, , therefore I rse- ro 1 < 

< I rso - r. 1. As a rule an opposite inequality exists for t,, and t,“. A similar pattern 

will also be observed in the case of sufficiently large, but finite absolute values of xtr,, 
although the determination of point s ‘of the shock wave onset requires further consider- 

ation. The derived relationships are, of,course, not applicable when an “internal” shock 

wave intersects the primary nonequilibrium characteristic, as shown on Fig. 2a where the 

shock wave is represented by the solid line emanating from point s ‘. The converse situ- 
ation is also possible (for example, on account of selection of the piston motion law) in 

which case there are two shock waves (Fig. 2 b). 
The ~rt~bation of flow in the neighborh~ of the primary n~equilibrium charac- 

teristic may be defined for 5’ = + 0 by the magnitude of the derivative (dp I’ at),. G ,~~/t,, 

In accordance with (2.9),(2.10) and (2.12) the absolute value of this derivative with 
xc0 < 0 first decreases with increased distance from point 0 the faster, the greater 1 ia 1 

is, and then sharply increases in the neighborhood of s , or of the axis of symmerty, and 
becomes infinite. It follows from this that with J Am{ r, - F,) J m 1 there exists between 
points 0 and s an area of almost unprobed gas, and that the intensity of the shock 
wave generated in the neighborhood of s is low. 

In concluding the analysis of the nonstationary case, we may note that, if its solution 
does exist, equality (2.13) uniquely defines r, or hm by virtue of the monotonousness 
of %’ with respect to r and h m, when the remaining parameters are known. In particular, 

we have for V = 0 
re=‘a&- in (ii&-l 

which coincides to within notations used wit: the results obt$i/ned by B%ger 1111. 

3. Let X and y be orthogonal coordinates which in the axisymmetric case lie in the 

meridian plane, with the x-axis coinciding with the axis of flow. We denote the projec- 
tions of gas velocity on the X- and Q-axes by u and V respectively. We shall consider 
a plane, or ax~symme~ic flow of homogeneous supersonic stream in a state of thermo- 
dynamic equ.iIibrium past a body the contour of which is generated by curve 9 = Y(X). 
Let the flow of gas be from left to right, and the tangent to the generatrix at the leading 
edge be parallel to the velocity of the free stream (Fig. 3, where 0 is the leading edge 
of the body, with the upper and lower branches of the solid shaded line represent the 

generatrices for the external and internal problems respectively) . 
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Therefore go == Y fss) and Y,’ zz (a / dx), = 0, The thermodynamic proper- 
ties of gas are assumed to be the same as in the nonsrationary case. 

The sysrem of equations of a two-dimensionaf none~u~~ihr~urn stationary flow has, 
except along streamlines on which CL.&! / dz = u / u. two sets of real characteristics at 

supersonic velocities, i. e, when w2 G U” + V2 > a2 along which we have 

4I 1.v *n ~tu2-& _~~_ _ 
6z 1~2 - n’2 

f:%.I) 

Here the upper (lower} sign defines the direction of characteristics of the first {second) 

set, 

As in the nonstationary case we introduce characteristic variables 5” and 5” defined 

by Eq. 
(3.2) 

where the pfus sign is taken for 75 = 1 and minus for $ = 2 . ft is obvious from (3.1) anti 
(3.2) that on each characteristic of an $th set 5 ’ = const . 

The flow analyzed here Es expressed in terms of semicharacteristic variables y<’ by 
the svstem of eauations 

w2 -+- 2h = const (3.3f 

In (3.3) v = 0 I or 1, respectively. in a plane, or axisymmetric case, with the upper 

signs yielding a system re 
in terms of variables z/g 

B 
resenting the flow in terms of variables &‘cl, and the lower - 
m 

The enthalpy h, velocity of sound a v functions u)K and the remaining thermodynamic 

parameters are defined by the previously used relationships. 
Characteristics c1 = const , and FJa = const of the external and internal problems respec- 

tively are shown on Fig, 3 by solid lines. In each of these cases we shall assume that 
along the primary characteristic emanating from the point 0 and bounding the area of 
unperturbed flow we put 5’ = 0 . As in the nonstationary case we shall assign subscript 

0~ to derivatives which remain continuous along the primary characteristic, as well as to 
gas parameters for 5’ = 0 

Ua?‘Oj,~== Uya, = Vy73 = p$/Ki = PO# = %_#co = 9ntP? = QU$XI = 0 (3,4) 

We select on each characteristic of the &th set 5’ equal to {X -x0) at points of 
intersection of these either with the generatrix of the body, or with the straight line ‘&&, * 
depending on whether the characteristics lie to the right, or left of the primary charac- 
teristic. The area of the perturbed flow will then be defmed by inequality 5’ > 0, while 
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at the point 0 we shall have for 4’ = + 0 

Qo = 1, u&J = UrnYON (3.5) 

The points of intersection of characteristics, which we shall as 

previously call singular, are determined by equality 

Fig. 3 

The condition for the determination of coordinates of a singu- 
lar point belonging to the primary characteristic is found in the 

same manner as in the nonstationary case. 
When 5’ = + 0 we obtain from (3.3) and (3 4) 

V--- M&-i 
=f pu PC WC?3 

hk ( “/.P + a20kp) up (a + Pa, + PaZap) 
2akah, ’ CL = us (u* - aa) 

> 

where I= W/CT is the Mach number, The upper (lower) sign relates here and in the fol- 

lowing to the external (internal) problem. 
Integrating the last two of Eqs, (3.6) with initial conditions (3.5) taken into account, 

we find that for 5’ = + 0 

PE = f Yo” . J/gg&,_ e=P bk La (Y -- Yo)l 

q=l- Yo”%Jw, Y, Yo, Lo) 

where @ coincides with the similar function in (2.10). 
Formulas for ‘PE and xe differ from (2.9) and (2.10) only with respect to notations, 

and unimportant positive multiplication factors appearing in the expressions of PE, a 
and x . Hence all deductions of the preceding section related to v = 0 and 1 are valid 

in this case also (the equilibrium characteristic appearing in our deductions is also shown 
on Fig. 3 by a dotted line). If we substitute x for t , and @ for r , and Y for 8 , then 
formulas subsequent to (2.10) are also valid. 
In concluding we may note that for a perfect gas 

ol, = 
(x + 1) J&4 
2(M,2-1) ’ 

h, = 0 

and (2.14) leads to expressions for Jja obtained in [9 and 10) . 



812 A. N. Kralko 

BIBLIOGRAPHY 

1. Earnshaw, S., On the mathematical theory of sound. Philos. Trans. Roy. Sot. , 
London, A., Vol150, part 1, 1860. 

2. Hugoniot, H., Memoire sur la propagation du mouvement dam les corps, et 
spgcialement dans Ies gaz parfaits. J. de 1’Ecole Polytechnique. No. 57,1887 and 
No. 58, 1889. 

3. Rayleigh, 0. M., Aerial plane waves of finite amplitude. Proc, Roy. Sec. , A., 

Vol. 84, No. 570, 1910. 

4. Pillow, A. F., The formation and growth of shock waves in the one-dimensional 

motion of a gas. Proc. Cambridge Philos, Sot., Vol. 45, part 4, 1949 . 
5. Courant, P. and Friedrichs, K, , Supersonic flow and shock waves.(Russian 

translation) M., Izd. Inostr. Lit., 1950. 

6. Landau, L. D. and Lifshits, E. M. , Mechanics ofContinuous Media. 
2nd ed., M., Gostekhizdat. 1954. 

7. Geffrey, A., The development of jump discontinuities in nonlinear hyperbolic 
systems of equations in two independent variables. Arch. Rat. Mech. AnaI. , Vol. 
14, No. 1, 1963. 

8. Jeffrey, A., On the formati~ of a converging shock wave in a gas of variable 

density. J. Math, Anal, Appt , Vol. 13, No. 1, 1966, 

9. Meyer, R. E., The method of characterfstics for problems of compressible flow 

involving two independent variables. Quart. J. Mech. Appl. Math., Vol. 1, part 2, 
and part 4, 1948. 

10. Johannesen. N. H., Experiment on two-dimensional supersonic flow in comers 
and over concave surfaces. Phiios, Msg., Vol. 43 No. 340, 1952. 

11. B’rirger, W., Zur Entstehung von Verdichtungss&sen beim “Kolbenversuch” in 

Gasen mit thermodynamischen Relaxation. Z. angew. Math. Mech., Bd. 46, Hft. 2, 

1966. 
12. Rarity, B. S. H., On the breakdown of characteristic solutions in flows with 

vibrational relaxation. J. Fluid Mech. I Vol. 27, part 1, 1967. 

13. Courant. R. t Equations with partial derivatives. M, , Izd. “Mir”, 1964. 
14. Lax, P., The initial problem for nonlinear hyperbolic equations in two indepen- 

dent variables. Ann. Math. Stud. , Vol. 33, 1954. 
15. Jeffrey, A. and Taniuty, T, , Nonlinear wave propagation. N. Y. Acad. 

Press, 1964. 
16. Kraiko. A. N., Study of weakly perturbed supersonic flows with an arbitrary 

number of nonequilibrium processes. PMM Vol. 30, No. 4, 1966. 

Translated by J. J. D. 


